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a b s t r a c t

GCxGC is now recognized as the most suited analytical technique for the characterization of complex
mixtures of volatile compounds; it is implemented worldwide in academic and industrial laboratories.
However, in the frame of comprehensive analysis of non-target analytes, going beyond the visual exami-
nation of the color plots remains challenging for most users. We propose a strategy that aims at classifying
chromatograms according to the chemical composition of the samples while determining the origin of
the discrimination between different classes of samples: the discriminant pixel approach.

After data pre-processing and time-alignment, the discriminatory power of each chromatogram pixel

orrelation analysis
on-target analytes for a given class was defined as its correlation with the membership to this class. Using a peak finding algo-

rithm, the most discriminant pixels were then linked to chromatographic peaks. Finally, crosschecking
with mass spectrometry data enabled to establish relationships with compounds that could consequently
be considered as candidate class markers.

This strategy was applied to a large experimental data set of 145 GCxGC-MS chromatograms of tobacco
thre
extracts corresponding to

. Introduction

Comprehensive GCxGC appears nowadays to be the prime ana-
ytical tool for the study of complex mixtures of volatile compounds
1–4]. Structured 2D-chromatograms (often visualized as color
lots) are obtained, where spots having different colors as a func-
ion of detector response replace the usual peaks of classical 1D
hromatograms. Using an optimized (“orthogonal”) set of columns,
ompounds are organized in the color plot according to both carbon
umbers and chemical structure [5], which facilitates interpreta-
ion. This technique has proven its usefulness and reliability in
arious areas such as the petroleum industry [6,7], flavors and
ragrances [8,9], environmental [10,11], food [12,13], etc. How-
ver, handling chromatograms with several hundreds of spots, even
ore for petroleum samples [14,15], is not simple and requires the

se of chemometrics [16].

For target analyte analysis, it has been proven that individual or

roup quantification was quite possible on GCxGC chromatograms
nd gave results of similar quality as those obtained with GC [7]. In
he case of non-target analyte analysis, the situation is much less

∗ Corresponding author. Tel.: +33 140794779; fax: +33 140794776.
E-mail address: jerome.vial@espci.fr (J. Vial).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.07.059
e distinct classes of tobacco.
© 2010 Elsevier B.V. All rights reserved.

favorable: the individual quantification of each compound would
be theoretically possible, however the time required for an operator
to do so would become rapidly unacceptable. A global comparison
of chromatograms is required and should highlight some specific
compounds presenting significant concentration differences from
sample to sample, or better from one class of samples to another
one.

Any global comparison of GCxGC chromatograms requires sev-
eral pre-processing steps such as background correction, intensity
normalization, and especially time alignment [17–22]. As a mat-
ter of fact, in a previously published paper, the efficiency of
DTW (Dynamic Time Warping) alignment of the second dimen-
sion was illustrated on a reduced set of tobacco extract samples
[23].

In the same study, the potential of using the loadings of Princi-
pal component analysis (PCA) or Independent Component analysis
(ICA) in order to discover locations of the chromatograms that could
discriminate between classes was investigated [23]. PCA being
unsupervised, i.e. not using the knowledge about the classes, the

first principal components of PCA might correspond to directions
of large within class variance, but not of large class-to-class vari-
ance. ICA is also unsupervised, but it looks for components that
are as least Gaussian as possible, and is therefore more likely to
find directions that display structure in the data [24]. However, ICA
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Table 1
Sources of variability and their modalities.

Tobacco type Burley Virginia Oriental

Extraction mode SDE SFE SDE SFE SDE SFE
296 J. Vial et al. / Talan

ssumes strongly non-Gaussian data, and has the disadvantage of
eing an iterative method, hence computationally heavy for data
f the size of 2D-chromatograms.

Thus, in the present study, we propose a supervised method
hat evaluates the ability of each pixel of the chromatogram to dis-
riminate between the class of interest and all the other classes
n order to find the locations that are characteristic of a given
lass. A pixel being a detector intensity measured at a given time
n the raw acquisition sequence (which corresponds to the reten-
ion times along the two dimensions), the most discriminant pixels
an be related to chemical markers using mass spectrometry data.
his strategy was applied to two extended experimental data
ets of GCxGC-MS chromatograms of tobacco extracts correspond-
ng to three distinct types of tobacco (Burley, Oriental, Virginia),
nd obtained either by supercritical fluid extraction (101 chro-
atograms) or steam distillation extraction (44 chromatograms)

in the paper focusing on time-alignment [23], only 12 SDE chro-
atograms were available). Because of their complexity, tobacco

xtracts are typically suited for GCxGC separations.

. Experimental

.1. GCxGC apparatus

A trace GCxGC system from Thermo-Electron Corporation
Courtaboeuf, France) equipped with a Merlin Microseal injec-
or (Merlin Instrument Company, CA, US) was used. It was
tted out with a double jets carbon dioxide cryogenic modula-
or, and a split/splitless injector. In order to avoid discrepancies
elated to a poor trapping of the compounds in the modula-
or, the two jets were placed closer to the column than in the
riginal configuration. The set of columns presenting the best
ompromise both in terms of separation and resistance of the
tationary phases to degradation was as follows. The first col-
mn was an apolar capillary column VF-1ms, Varian (Les Ulis,
rance), 15 m × 0.25 mm, 1.0 �m. This column was connected to
DB 1701 1.5 m × 0.1 m, 0.1 �m from Agilent Technologies (Wald-
ronn, Germany). Connections between columns were made using
eactivated Press-Tight® connectors from Restek (Evry, France).
he flow rate of the carrier gas was 1 mL/min and the injec-
or was set at 240 ◦C. In order to have a preconcentration of
he solutes at the beginning of the first column, a cold trapping
as applied to the splitless injection. The oven temperature pro-

ram started at 40 ◦C for 40 s, then an increase at 60 ◦C/min was
pplied up to 70 ◦C, and after a hold for of 3 min, 2.5 ◦C/min were
pplied up to 240 ◦C. The injected volume was 2 �L. The injec-
ion was carried out in splitless mode with a surge of 400 kPa
uring 40 s. A typical modulation period of 5 s was used. Detec-
ion was carried out with the quadripolar mass spectrometer DSQ
(Thermo-Electron). The transfer line was set at 250 ◦C. Clas-

ical electron ionization (70 eV) was used; the mass range was
imited to 40–240 m/z so that the acquisition frequency (exper-
mentally measured around 30 Hz) was compatible with GCxGC
ata. Excalibur software was used for acquisition; then, data were

mported into Hyperchrom S/W software for the visualization
f 2D-chromatograms. Hyperchrom S/W offers the possibility to
xport the total ionic current (TIC) as a 2D chromatogram in a
ext file. This TIC matrix (807 × 161) could then be read with Mat-
ab (R2008b, The MathWorks, Natick, MA, USA) for further data
rocessing.
.2. Gases

Liquid CO2 was of industrial grade and purchased from Air
iquide (Le Plessis Robinson, France). Pure gases, i.e. helium
Number of different samples 4 4 4 4 4 12
Number of extractions 1 2 1 2–3 1 2
Number of injections 2–3 2–5 2–3 2–3 2–3 2–3

(99.9995%) and CO2 (99.999%, for supercritical fluid extraction)
were purchased from Messer (Asnières, France).

2.3. Tobacco extracts

Three types of tobacco were considered: Burley, Virginia and
Oriental. For each type, different samples were available, corre-
sponding to different batches or different origins. The extracts were
obtained either by steam distillation extraction (SDE data set) or
supercritical fluid extraction (SFE data set).

2.3.1. SDE data set
A first set of tobacco hexane extracts was provided by the Impe-

rial Tobacco group. They were obtained by SDE, i.e. the “Likens
Nickerson” process [25] directly from tobacco leaves cut into small
pieces. Only one extract was available per sample, and several injec-
tions were made for each sample, leading to 44 chromatograms.

2.3.2. SFE data set
Another set of extracts was generated at the LSABM by SFE.

Extractions were performed with a Suprex SFE Prepmaster GA
apparatus (Pittsburgh, PA, USA) using 5 mL SFE cells. Extractions
were performed in static mode for 5 min, and in dynamic mode
for 30 min with a CO2 density of 0.4 at a temperature of 150 ◦C
[26]. Extracted compounds were collected after the pressure was
released by bubbling in three successive vials, each filled with 3 mL
of hexane:ethyl acetate (50:50, v/v) mixture. The injected sample
corresponded to the first 3 mL, as it was checked that no compound
was present in the last two vials. Several extracts were available per
sample, and several injections were made for each sample, leading
to 101 chromatograms.

Table 1 summarizes the sources of variability of the used data
sets. In order to limit chromatographic variability, all analyses were
performed in the shortest possible period of time for each data
set. In [26], the GCxGC repeatability was characterized by a RSD of
2.5%, while extraction to extraction variability (measured by global
quantification) ranged generally from 5 to 15%.

3. Data processing

Each data set (SDE and SFE) was processed independently. In
fact, the two extraction techniques lead to quite different results,
which cannot be pooled together.

Matlab routines were developed for the following processing
steps, except for time alignment which was implemented in the
C programming language providing faster computation, and inte-
grated in Matlab as a MEX-file.

3.1. Data pre-processing

In order to compensate for the variability inherent to GC injec-
tion, a pre-processing of the data was required.
3.1.1. Background correction
Correcting the baseline of a one-dimensional signal is a clas-

sic pre-treatment before the global comparison of chromatograms
(fingerprinting). In GCxGC, one-dimensional acquired signals being
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ig. 1. Unaligned background corrected and normalized signals (second dimension).

urned into images, a baseline correction amounts to a background
orrection. Our method of background subtraction was inspired by
DNA microarray pre-processing algorithm [27]. First, the image
as divided into N rectangular zones (typically N = 60). The pixels of

ach zone were ranked and the mean intensity of the lowest 2% was
hosen as the background level of the studied zone. Then, a smooth-
ng adjustment was performed: distances between each pixel of the
mage and the N zone centers were computed and a weighted sum

as calculated based on the reciprocal of a constant plus the square
f the distances to all the zone centers. The smooth backgrounds
btained in this manner were subtracted to the chromatograms.

.1.2. Normalization
Differences in chromatograms due to variations in sample

mount and/or detector response must be corrected. GCxGC
ntensities being approximately linear with respect to amount,
ormalization could be implemented by a simple multiplicative
caling. The scale factor was set so that the mean intensity of each
hromatogram equaled 1.

.2. Dynamic time warping

The short separation along the second chromatographic dimen-
ion (5 s), is very sensitive to experimental conditions (pressure,
emperature, etc.). As a result, bias in retention time occurs for a
arget peak from one analysis to another (see Fig. 1 in the case of
wo Virginia SDE samples).

Consequently, a comparison of chromatograms with peak mis-
lignment would be meaningless. Therefore, to align the peaks,
ynamic Time Warping (DTW) was used. Originally, this method
as developed to address speech recognition issues [28]; Wang and

senhour first proposed its application to chromatographic signals
29]. In [23], the classic DTW algorithm was applied to the align-

ent of a small set of SDE extracted tobacco samples. In the present
ork, we improved the performance of the standard algorithm by

dding constraints on the warping path. Indeed, two major pitfalls
ay occur during the construction of the path.
First, the path may follow a staircase trajectory, presenting long,

nrealistic, vertical and horizontal thresholds. In order to solve this
roblem, a direct constraint on the slope of the warping path has
een applied, by simply preventing the succession of two horizon-
al or two vertical segments in the dynamic programming matrix
slope constraint of [28] P = 1). Second, even with this first modifi-
ation, the path may move too far away from the matrix diagonal.
s proposed in [28], a windowing on the dynamic programming
atrix prevents the path from deviating. It merely consisted in con-

ning the path in a pipe centered on the matrix diagonal. The result

f the alignment for the signals of Fig. 1 is shown in Fig. 2.

All the chromatograms have been aligned with the DTW
lgorithm constrained as described above. The windowing was
erformed with a rectangular, 40 pixels wide window. This algo-
ithm was first developed with Matlab, and later implemented
Fig. 2. Aligned signals (second dimension).

in the C language as a MEX-file in order to save computation
time.

The alignment was operated on each column of the matrix cor-
responding to each chromatogram. It was done in a supervised
fashion inside each tobacco family: for each tobacco type, one
chromatogram was taken as a reference on which all the others
samples were aligned. It was checked that the choice of the refer-
ence chromatogram inside each group had no decisive influence on
the subsequent discriminant pixel identification.

3.3. The discriminant pixel approach

In order to find the locations that are characteristic of a given
class, we developed a supervised method that evaluates the abil-
ity of each pixel of the chromatogram to discriminate between the
class of interest and all the other classes. This idea was inspired by
supervised classification algorithms which starts simplifying the c
class classification task by dividing it into c easier subtasks: sep-
arating each class from all others [30] using the descriptors (also
pixels in the case of hand-written recognition for example) that are
most relevant for this separation.

Let us denote by N1 = 807 and N2 = 161 the number of pixels
along the first and second dimensions. We consider the vector pij
associated to the pixel ij (for i = 1 to N1, j = 1 to N2), whose compo-
nents pij(l) are the pixel intensity values for each chromatogram of
the data set, hence of dimension n = n1 + n2 + n3, the {ni} being the
numbers of chromatograms in each class (class 1 being Burley, class
2 Virginia and class 3 Oriental). For each class k = 1 to c = 3, we define
a vector vk of dimension n coding for the belonging of the corre-
sponding samples to the class of interest, i.e. whose components
vk(l) equal +1 for the samples belonging to the class of interest and
−1 for all other samples.

The ability of the pixel ij to discriminate between class k and
the others was defined as Pearson’s linear correlation coefficient
between pij and vk:

rk
ij =

∑n
l=1(pij(l) − p̄ij)(vk(l) − v̄k)√∑n

l=1(pij(l) − p̄ij)
2∑n

l=1(vk(l) − v̄k)
2

The two vectors are schematically represented in Fig. 3 in the case
where the class of interest is the Burley tobacco, i.e. the coding
vector is v1. If the correlation is close to 1, the pixel corresponds
to a compound over-represented in Burley samples, and if it is close
to −1, the pixel corresponds to a compound under-represented in
Burley samples.

For each class k = 1 to c = 3, the computation was performed for
all the chromatogram pixels, i.e. a correlation map rk of dimension

N1 × N2 was obtained. A correlation threshold value must then be
chosen, or a maximal number of pixels (typically 500 pixels), in
order to select the most discriminant ones (i.e. with correlation
closest to 1). In practice, the correlation map for a given class looks
like a GCxGC chromatogram whose pixel intensities are the values



1298 J. Vial et al. / Talanta 83 (2011) 1295–1301

Fig. 3. Computation of the Burley correlation map (for one of its pixels).

F forme
d ses ar

o
i

i
P
F
(
t
t
c
c
t
F
f
t
m
d
t
o
r

ig. 4. PCA score plot after data pre-processing. “corr.” indicates that PCA was per
enote the first and second principal components, and the percentages in parenthe

f the correlation coefficients with the vector coding for the class
n question.

An analogy could be naturally established between the discrim-
nant pixel approach and the Fisher Ratio method, first proposed by
ierce et al. [31], and further developed by Mohler et al. [32]. The
isher Ratio consists in performing a one-way analysis of variance
ANOVA) for each pixel, the modalities of the single factor being
he different classes, and the Fisher Ratio being the F-statistics of
he ANOVA. Pixels exhibiting large Fisher ratios correspond to large
lass-to-class variance with respect to within class variance, i.e. to
ompounds whose amount differs significantly between at least
wo couples of classes. Whereas the Fisher Ratio produces a single
-map, and a list of pixels for which it remains to be determined
or which couples of classes they are discriminant (in the same way
hat an ANOVA that rejects the null hypothesis must be followed by
ultiple pairwise comparisons), the discriminant pixel approach
irectly outputs as many correlation maps as there are classes,
ogether with the lists of the pixels corresponding to compounds
ver-represented (or under-represented) in each of the classes with
espect to all others. In the case of only two classes however, the
d with the columns of the experience matrix scaled to have unit norm. v1 and v2
e the amount of the original variance they account for.

Pixel Discriminant approach and the Fisher Ratio method coincide
(both ANOVA and correlation significance being equivalent to that
of a t-test).

3.4. Peak identification

After alignment, the coordinates of the pixels cannot be directly
converted into the retention times of the corresponding com-
pounds, because the coordinates of the pixels no longer correspond
to the original retention times: the warping breaks the linear rela-
tion between pixels coordinates and retention times. Therefore, a
reverse warping had to be applied to get back to the original coor-
dinates of the pixels (their coordinates before DTW). This operation
was simply made by reversing the warping path of the considered
signal calculated during the alignment.
Then, the discriminant pixels could be related to the peaks they
belong to (several pixels may correspond to a single peak). A sim-
ple search of local maximum around discriminant pixels allowed
to find the maximum of the considered peak, and to define a chro-
matographic peak zone using the Hyperchrom software.
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. Results and discussion

The effect and the relevance of each step of the data process-
ng was evaluated according to the quality of the separation of the
obacco types on PCA score plots.

.1. Effect of the data pre-processing

The results of PCA applied to the pre-processed data (intensity
ormalization and background correction) are presented on Fig. 4.
he different tobacco types were quite overlapping (particularly for
DE data), which confirmed the need for a peak alignment process.

.2. Effect of the time alignment

Fig. 5 shows that the alignment enhanced the discrimination
etween the different kinds of tobaccos: the three classes were
uite well separated after DTW.

.3. Discriminant pixel selection
The correlation maps described previously have been computed
or each data set and for each tobacco type; they are shown in Fig. 6
SDE) and Fig. 7 (SFE).

ig. 6. SDE correlations maps and 500 most discriminant pixels (magenta points).
xis units are given in pixels because the alignment breaks the linear relationship
ith time along the second dimension.
the time alignment.

The color code for the maps is given by the column on the right
side of Figs. 6 and 7: white corresponds to a maximum correla-
tion of 1 with the coding vector of the class of interest (i.e. to the
pixels that are most discriminant for that class, and correspond to
compounds that are over-represented in this class), and black to
−1 for a minimum correlation (these pixels are also discriminant,
but correspond to compounds that are under-represented in the
class). Grey corresponds to correlation values around zero, i.e. non-
discriminant pixels. As opposed to the Fisher Ratio approach, which
produces a single map whatever the number of classes, the dis-
criminant pixel approach provides a correlation map for each class
(here each of the three tobacco types). Whereas for a significant
pixel of the F-map, it remains to be determined for which couples
of classes it is discriminant, this information is directly available on
the correlation maps.

A first comparison of the discriminant pixels identified on SFE
and SDE extracts showed a partial overlap. However, a compre-
hensive comparison could not be carried out, because the two sets
of experiments have been made at quite different times and on
different sides.

The selected pixels may further be used as a new set of descrip-
tors for the PCA: Instead of taking the 129 927 pixels of the

chromatograms as descriptors, only the union of the 1500 (3
kinds of tobaccos × 500 pixels for each kind) selected pixels was
retained (see Fig. 8). The separation between the tobacco types
appeared then obvious: the discriminant pixel selection has nat-

Fig. 7. SFE correlations maps and 500 most discriminant pixels. Axis units are in
pixels.
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Fig. 8. PCA after dis

rally enhanced the discrimination between the chromatograms
f each type by focusing on the differences. Moreover the percent-
ge of information brought by the two first PCs increased from 30%
efore pixel selection to 90% afterwards.

.4. Discriminant components

After a reverse time warping the discriminant pixels could be
ransferred back on the original chromatograms, and using the
yperchrom peak finding algorithm, it led to the definition of a
hort list of discriminant peaks. This short list could be linked to
ass spectrometry data in order to identify the discriminant chem-

cal compounds. An example is shown in Fig. 9 on a SFE Burley
ample. These potential chemical markers are among the usual
ompounds founds in tobacco extracts.

Fig. 9. Discriminant components identifie
ant pixel selection.

4.5. Discussion and outlooks of the discriminant pixel strategy

The whole strategy from the raw data to the correlation maps is
fully automated and takes less than 1 min on a standard computer
for a set of a hundred chromatograms.

However, the proposed discriminant pixel approach needs to be
further optimized. In particular, it is still necessary for the analyst
to define the number of the most discriminant pixels manually. In
the present paper for example, the same number was chosen for all
tobacco classes, but this may not reflect the reality. In fact, when
computing the significance of the correlations (by assuming Gaus-

sian data), and accounting for multiple testing with a Bonferroni
correction, we observed that on SDE data, similar numbers of pix-
els were considered discriminant for the three classes, but that they
were very different on the SFE data set, with many more discrimi-
nant pixels for Oriental tobacco. This is in accordance with the fact

d thanks to mass spectrometry data.
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hat Oriental tobaccos are richer in volatile compounds than the
ther tobacco types and that SFE is more likely to extract than SDE.

Another issue that needs to be addressed is the way the differ-
nt variability sources are taken into account. As summarized in
able 1, the variability of the samples has three sources: the ori-
in, the extraction and the injection. Here, all these sources have
een put at the same level. A future task will be to evaluate their
agnitude, and according to the results, to determine whether and

ow the discriminatory power evaluation made today should be
odified.

. Conclusion

This study demonstrates the relevance of a chemometric
trategy to interpret and compare GCxGC chromatograms in an
utomatic way. PCA allowed checking the quality and the relevance
f the different data processing steps we used. The discriminant
ixel approach authorized using a whole data set in a super-
ised fashion in order to identify areas of the chromatograms that
ere discriminant for each sample class. Ultimately, the discrimi-
ant pixel approach coupled with mass spectrometry data allowed
he identification of candidate chemical markers specific of a give
obacco class.

Beyond the discrimination of origin and grades inside a tobacco
ype, this opens wide outlooks in the improvement of automatic
rocessing strategies to interpret GCxGC chromatograms. In paral-

el, other analytical problematic requiring the use of comprehensive
hromatographic separation, environmental for example, remain
o be investigated to demonstrate the flexibility and the wide
pplicability of the proposed strategy. Moreover, spiking strategies
emain to be applied to tobacco samples for validation purposes
31]. The complexity of GCxGC chromatograms of plant extracts
equires nevertheless a thorough study of the spiking strategy to
nsure that it is compatible both with the sample handling proce-
ure and the dense coverage of the separation space.
eferences

[1] M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, TrAC Trends Anal. Chem.
25 (2006) 821.

[
[

[

2011) 1295–1301 1301

[2] C. Cordero, P. Rubiolo, B. Sgorbini, M. Galli, C. Bicchi, J. Chromatogr. A 1132
(2006) 268.

[3] T. Gorecki, J. Harynuk, O. Panic, J. Sep. Sci. 27 (2004) 359.
[4] R. Shellie, P. Marriott, Flavour Fragr. J. 18 (2003) 179.
[5] M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, TrAC Trends Anal. Chem.

25 (2006) 438.
[6] M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, TrAC Trends Anal. Chem.

25 (2006) 726.
[7] C. Vendeuvre, F. Bertoncini, L. Duval, D. Thiebaut, M.C. Hennion, J. Chromatogr.

A 1056 (2004) 155.
[8] B. d’Acampora Zellner, A. Casilli, P. Dugo, G. Dugo, L. Mondello, J. Chromatogr.

A 1141 (2007) 279.
[9] R. Shellie, P. Marriott, A. Chaintreau, Flavour Fragr. J. 19 (2004) 91.
10] C. Danielsson, K. Wiberg, P. Korytar, S. Bergek, U.A.Th. Brinkman, P. Haglund, J.

Chromatogr. A 1086 (2005) 61.
11] J.-F. Focant, A. Sjödin, D.G. Patterson Jr., J. Chromatogr. A 1040 (2004) 227.
12] S. de Koning, E. Kaal, H.-G. Janssen, C. van Platerinkd, U.A.Th. Brinkman, J.

Chromatogr. A 1186 (2008) 228.
13] P.Q. Tranchida, A. Giannino, M. Mondello, D. Sciarrone, P. Dugo, G. Dugo, L.

Mondello, J. Sep. Sci. 31 (2008) 1797.
14] C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, D. Thiébaut, M.-C. Hen-

nion, J. Chromatogr. A 1086 (2005) 21.
15] C. Vendeuvre, F. Bertoncini, D. Espinat, D. Thiébaut, M.-C. Hennion, J. Chro-

matogr. A 1090 (2005) 116.
16] K.M. Pierce, J.C. Hoggard, R.E. Mohler, R.E. Synovec, J. Chromatogr. A 1184 (2008)

341.
17] N.-P. Vest Nielsen, J.M. Carstensen, J. Smedsgaard, J. Chromatogr. A 805 (1998)

17–35.
18] C.G. Fraga, B.J. Prazen, R.E. Synovec, Anal. Chem. 73 (2001) 5833.
19] K.M. Pierce, J.L. Hope, K.J. Johnson, B.W. Wright, R.E. Synovec, J. Chromatogr. A

1096 (2005) 101.
20] K.M. Pierce, L.F. Wood, B.W. Wright, R.E. Synovec, Anal. Chem. 77 (2005)

7735.
21] F. Suits, J. Lepre, P. Du, R. Bischoff, P. Horvatovich, Anal. Chem. 80 (2008) 3095.
22] D. Zhang, X. Huang, F.E. Regnier, M. Zhang, Anal. Chem. 80 (2008) 2664.
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